School of Biomedical Sciences
生物醫學學院
The Chinese University of Hong Kong 香港中文大學

LEUNG Po Sing

Professor

B.Sc., Ph.D.

Telephone:  39436879

Email:  This email address is being protected from spambots. You need JavaScript enabled to view it.

Address:

 Rm 609A, 6/F., Lo Kwee-Seong Integrated Biomedical Sci. Bldg, Area 39, CUHK

  1. Pancreatic islet cell biology and diabetes
  2. Pancreatic progenitor cell and islet development
  3. Novel agents/drugs for treating diabetes and pancreatic cancer
  1. Li Y. T., Cheng T. W., Zhang D. and Leung P. S. (2017). Identification and functional implications of sodium/myo-inositol cotransporter-1 in pancreatic beta-cells and type 2 diabetes mellitus. Diabetes (Epub ahead of print, 2017 Feb 15).
  2. Zhang D., So W. Y., Wang Y., Wu S. Y., Cheng Q. and Leung P. S. (2017). Insulinotropic effects of GPR120 agonists are altered in obese diabetic and obese non-diabetic states. Clinical Science, 131(3), 247-260.
  3. Wang L., Wang Y., Li X. Y. and Leung P. S. (2017). Angiotensin II type 2 receptor activation with compound 21 augments islet function and regeneration in streptozotocin-induced neonatal rats and human pancreatic progenitor cells. Pancreas, 46(3), 395-404.
  4. Liang J., Wu S. Y., Zhang D., Wang L., Leung K. K. and Leung P. S. (2016). NADPH oxidase-dependent reactive oxygen species stimulate beta-cell regeneration through differentiation of endocrine progenitors in murine pancreas. Antioxidants and Redox Signaling, 24(8), 419-433.
  5. Cheng T. W., Chen L., Li Y. T., Mayoux E. and Leung P. S. (2016). The effects of empagliflozin, an SGLT2 inhibitor, on pancreatic β-cell mass and glucose homeostasis in type 1 diabetes. PLoS One, 11(1), e0147391.
  6. So W. Y. and Leung P. S. (2016). Fibroblast growth factor 21 as an emerging therapeutic target for type 2 diabetes mellitus. Medical Research Reviews, 36(4), 672-704.
  7. So W. Y., Cheng Q., Xu A., Lam S. L. and Leung P. S. (2015). Loss of fibroblast growth factor 21 action induces insulin resistance, pancreatic islet hyperplasia and dysfunction in mice. Cell Death and Disease, 6, e1707.
  8. Chen L., So W. Y., Li S. Y. T., Cheng Q., Boucher B. J. and Leung P. S. (2015). Niacin-induced hyperglycemia is partially mediated via niacin receptor GPR109a in pancreatic islets. Molecular and Cellular Endocrinology, 404, 56-66.
  9. Wang L., Liang J. and Leung P. S. (2015). The ACE2/Ang-(1-7)/Mas axis regulates the development of pancreatic endocrine cells in mouse embryos. PLoS One, 10(6), e0128216.
  10. Leung K. K., Liang J., Zhao S., Chan W. Y. and Leung P. S. (2014). Angiotensin II type 2 receptor regulates the development of pancreatic endocrine cells in mouse embryos. Developmental Dynamics, 243(3), 415-427.
  11. So W. Y., Cheng Q., Chen L., Evans-Molina E., Xu A., Lam S. L. and Leung P. S. (2013). High glucose represses β-klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator-activated receptor gamma signaling. Diabetes, 62(11), 3751-3759.
  12. Cheng Q., Boucher B. J. and Leung P. S. (2013). Modulation of hypovitaminosis D-induced islet dysfunction and insulin resistance through direct suppression of the pancreatic islet renin-angiotensin system in mice. Diabetologia, 56(3), 553-562.
  13. Leung K. K., Liang J., Ma M. T. and Leung P. S. (2012). Angiotensin II type 2 receptor is critical for the development of human fetal pancreatic progenitor cells into islet-like cell clusters and their potential for transplantation. Stem Cells, 30(3), 525-536.
  14. Cheng Q., Li Y. C., Boucher B. J. and Leung P. S. (2011). A novel role for vitamin D: modulation of expression and function of the local renin-angiotensin system in mouse pancreatic islets. Diabetologia, 54(8), 2077-2081.
  15. Leung P. S. and Chan Y. C. (2009). Role of oxidative stress in pancreatic inflammation. Antioxidants and Redox Signaling, 11(1), 135-165.
  16. Wong T. P., Debnam E. S. and Leung P. S. (2007). Involvement of an enterocyte renin-angiotensin system in the local control of SGLT1-dependent glucose uptake across the rat small intestinal border membrane. Journal of Physiology, 584, 613-623.
  17. Chu K. Y. and Leung P. S. (2007). Angiotensin II type 1 receptor antagonism mediates uncoupling protein 2-driven oxidative stress and ameliorates pancreatic β-cell function in young type 2 diabetic mice. Antioxidants and Redox Signaling, 9(7), 869-878.
  18. Chu K. Y., Lau T., Carlsson P. O. and Leung P. S. (2006). AT1 receptor blockade improves β-cell function and glucose tolerance in mouse model of type 2 diabetes. Diabetes, 55(2), 367-374.
  19. Leung P. S., Srai S. K., Mascarenhas M., Churchill L. J. and Debnam E. S. (2005). Increased duodenal iron transport in a rat model of chronic hypoxia is accompanied by reduced hepcidin expression. Gut, 54(10), 1391-1395.
  20. Lau T., Carlsson P. O. and Leung P. S. (2004). Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia, 47(2), 240-248.