School of Biomedical Sciences
The Chinese University of Hong Kong 香港中文大學

Albert Cheung助理教授

電話:  3943 9796

電郵:  Email住址會使用灌水程式保護機制。你需要啟動Javascript才能觀看它


 707A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, CUHK






Prof. CHEUNG Hoi Hung Albert (張凱鴻) was graduated from The Chinese University of Hong Kong (CUHK). He received his Ph.D. through the CUHK-NIH Graduate Partnership Program. After obtaining his doctoral degree, he continued his postdoctoral research at Dr. Owen Rennert’s laboratory, National Institute of Child Health and Human Development.  During his postdoctoral training, he initiated two projects on modeling human diseases using induced pluripotent stem cells, and received the American Society of Human Genetics (ASHG) Trainee Award and the NIH Fellows Award for Research Excellence (FARE). In 2014, he joined the School of Biomedical Sciences, CUHK as a Research Assistant Professor.  He is interested in studying stem cell aging. He generated iPSC model of Werner syndrome (WS), a human genetic disorder displaying premature aging, for studying stem cell aging. WS patients experience a progressive decline in homeostatic and regenerative capacities, which is attributed to the accelerated degenerative changes in tissue-specific stem cells, stem cell niches and systemic cues that regulate stemness and self-renewal. Therefore, understanding the molecular pathways involved in stem cell aging is critical for developing new therapies for aging and age-related diseases. He is also interested in developing organoids for studying disease pathogenesis.

  1. The role of RecQ helicases in stem cell aging and premature aging diseases (Werner syndrome, Bloom syndrome).
  2. The role of DExD/H-box RNA helicases in stem cell aging and neurodegeneration.
  3. Disease modeling by organoids.
  1. Liu, Z.H. & Cheung, H.H. (2020). Stem Cell-Based Therapies for Parkinson Disease. Int. J. Mol. Sci., ; 21(21):8060. doi: 10.3390/ijms21218060.
  2. Wang, Z., Miu, K.K., Zhang, X., Wan, T.Y., Lu, G., Cheung, H.H., Lee, H.M., Kong, P.S., Chan, J.C.N. & Chan, W.Y. (2020). Hepatic miR-192-3p re-activation alleviates steatosis by targeting glucocorticoid receptor. JHEP Reports., Dec; 2(6). doi: 10.1016/j.jhepr.2020.100179.
  3. Tu, J., Wan, C., Zhang, F., Cao, L., Law, W.N., Tian, Y., Gang, L., Rennert, O.M., Chan, W.Y., & Cheung, H.H.* (2020). Genetic correction of Werner syndrome gene reveals impaired pro-angiogenic function and HGF insufficiency in mesenchymal stem cells. Aging Cell, May; 19(5):e13116. doi: 10.1111/acel.13116.
  4. Wang, W., Lu, G., Su, X., Tang, C., Li, H., Xiong, Z., Leung, C.K., Wong, M.S., Liu, H., Ma, J.L., Cheung, H.H., Kung, H.F., Chen, Z.J., & Chan, W.Y. (2020). Pten-mediated Gsk3β Modulates the Naïve Pluripotency Maintenance in Embryonic Stem Cells. Cell Death Dis, Feb 7; 11(2):107. doi: 10.1038/s41419-020-2271-0.
  5. Tu, J., Cheung, H.H., Lu, G., Chan, C.L., Chen, Z.J., & Chan, W.Y. (2019). microRNA-126 Is a Tumor Suppressor of Granulosa Cell Tumor Mediated by Its Host Gene EGFL7. Frontier in Oncology, 9, 486. doi: 10.3389/fonc.2019.00486.
  6. Cao, D., Cheung, H.H., & Chan, W.Y. (2019). Doxycycline masks the genuine effect of the doxycycline-inducible transgene by promoting dopaminergic neuron differentiation from human pluripotent stem cells. Stem Cells and Development, 28(13), 833-845. doi: 10.1089/scd.2018.0209.
  7. Tu, J., Cheung, H.H., Chan, L.K., & Chan, W.Y. (2019). The Role of microRNAs in Ovarian Granulosa Cells in Health and Diseases. Frontiers in Endocrinology, 10, 174. doi: 10.3389/fendo.2019.00174.
  8. Lautrup, S., Caponio, D., Cheung, H.H, Piccoli, C., Stevnsner, T., Chan, W.Y., & Fang, E.F. (2019). Studying Werner syndrome to elucidate mechanisms and therapeutics of human aging and age-related diseases. Biogerontology, 20(3), 255-269. doi: 10.1007/s10522-019-09798-2.
  9. Tu, J.J., Tian, G., Cheung, H.H., Wei, W., & Lee, T.L. (2018). Gas5 is an essential lncRNA regulator for self-renewal and pluripotency of mouse embryonic stem cells and induced pluripotent stem cells. Stem Cell Research & Therapy, 9(1), 71. doi: 10.1186/s13287-018-0813-5.
  10. Tu, J.J., Cheung, H.H., Lu, G., Chen, Z., & Chan, W.Y. (2018). MicroRNA-10a promotes granulosa cells tumor development via PTEN-AKT/Wnt regulatory axis. Cell Death & Disease, 9(11), 1076. doi: 10.1038/s41419-018-1117-5.
  11. Tu, J.J., Zhang, P., Luk, A.C.S., Liao, J.J.Y., Chan, W.Y., Cheung, H.H.*, & Lee, T.L.* (2018). MicroRNA-26b promotes transition from Kit- to Kit+ mouse spermatogonia. Experimental Cell Research, 373(1-2), 71-79. doi: 10.1016/j.yexcr.2018.09.018. 
  12. Yang, Y., Cheung, H.H., Zhang, C., Wu, J., & Chan, W.Y. (2018). Melatonin as Potential Targets for Delaying Ovarian Aging. Current Drug Targets, 20(1), 16-28. doi: 10.2174/1389450119666180828144843.
  13. Li, L., Miu, K.K., Gu, S., Cheung, H.H.*, & Chan, W.Y.* (2018). Comparison of multi-lineage diferentiation of hiPSCs reveals novel miRNAs that regulate lineage specification. Scientific Reports, 8(1), 9630. doi:10.1038/s41598-018-27719-0. 
  14. Tu, J.J., Cao, D., Li, L., Cheung, H.H.*, & Chan, W.Y.* (2018). MicroRNA profiling during directed differentiation of cortical interneurons from human-induced pluripotent stem cells. FEBS Open Bio, 8(4), 502-512. doi: 10.1002/2211-5463.12377.
  15. Tu, J.J., Yang, Y., Cheung, H.H., Chen, Z.J., & Chan, W.Y. (2017). Conserved miR-10 family represses proliferation and induces apoptosis in ovarian granulosa cells. Scientific Reports, 7, 41304. doi: 10.1038/srep41304.
  16. Liu, X., Campanac, E., Cheung, H.H., Ziats, M.N., Canterel-Thouennon, L., Raygada, M., Baxendale, V., Pang, A.L., Yang, L., Swedo, S., Thurm, A., Lee, T.L., Fung, K.P., Chan, W.Y., Hoffman, D.A., & Rennert, O.M. (2016). Idiopathic Autism: Cellular and Molecular Phenotypes in Pluripotent Stem Cell-Derived Neurons. Molecular Neurobiology, 54(6), 4507-4523.
  17. Yang, Y., Cheung, H.H., Tu, J.J., Miu, K.K., & Chan, W.Y. (2016). New insights into the unfolded protein response in stem cells. Oncotarget, 7(33), 54010-54027.
  18. Yang, Y., Cheung, H.H., Law, W.N., Zhang, C., Chan, W.Y., Pei, X., & Wang, Y. (2016). New Insights into the Role of Autophagy in Ovarian Cryopreservation by Vitrification. Biology of Reproduction, 94(6), 137.
  19. Cheung, H.H., Yang, Y., Lee, T.L., Rennert, O., & Chan, W.Y. (2016). Hypermethylation of genes in testicular embryonal carcinomas. British Journal of Cancer, 114(2), 230-6.
  20. Cheung, H.H., Pei, D., & Chan, W.Y. (2015). Stem cell aging in adult progeria. Cell Regen (Lond), 4, 6. doi: 10.1186/s13619-015-0021-z. eCollection 2015
  21. Cheung, H.H., Liu, X., Canterel-Thouennon, L., Li, L., Edmonson, C., & Rennert, O.M. (2014). Telomerase protects Werner Syndrome lineage-specific stem cells from premature aging. Stem Cell Reports, 2(4), 534-46.
  22. Gu, S., Cheung, H.H., Lee, T.L., Lu, G., Poon, W.S., & Chan, W.Y. (2013). Molecular Mechanisms of Regulation and Action of microRNA-199a in Testicular Germ Cell Tumor and Glioblastomas. PLoS One, 8(12), e83980.
  23. Cheung, H.H., Liu, X., & Rennert, O.M. (2012). Apoptosis: Reprogramming and the Fate of Mature Cells. ISRN Cell Biology, 2012, 685852.
  24. Cheung, H.H., Lee, T.L., Rennert, O.M., & Chan, W.Y. (2012). Methylation profiling using methylated DNA immunoprecipitation and tiling array hybridization. Methods in Molecular Biology, 825, 115-26.
  25. Cheung, H.H., & Rennert, O.M. (2011). Generation of fertile sperm in a culture dish: clinical implications. Asian Journal of Andrology, 13(4), 618-9.
  26. Cheung, H.H., Davis, A.J., Lee, T.L., Pang, A.L., Nagrani, S., Rennert, O.M., & Chan, W.Y. (2011). Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene, 30(31), 3404-15.
  27. Cheung, H.H., Lee, T.L., Davis, A.J., Taft, D.H., Rennert, O.M., & Chan, W.Y. (2010). Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding RNAs in human testicular cancer. British Journal of Cancer, 102(2), 419-27.
  28. Lee, T.L., Li, Y., Cheung, H.H., Claus, J., Singh, S., Sastry, C., Rennert, O.M., Lau, Y.F., & Chan, W.Y. (2010). GonadSAGE: a comprehensive SAGE database for transcript discovery on male embryonic gonad development. Bioinformatics, 26(4), 585-6.
  29. Cheung, H.H., Lee, T.L., Rennert, O.M., & Chan, W.Y. (2009). DNA methylation of cancer genome. Birth Defects Res C Embryo Today, 87(4): 335-50.
  30. Lee, T.L., Cheung, H.H., Claus, J., Sastry, C., Singh, S., Vu, L., Rennert, O., & Chan, W.Y. (2009). GermSAGE: a comprehensive SAGE database for transcript discovery on male germ cell development. Nucleic Acids Research, 37(Database issue), D891-7.
  31. Co, N.N., Tsang, W.P., Wong, T.W., Cheung, H.H., Tsang, T.Y., Kong, S.K., & Kwok, T.T. (2008). Oncogene AF1q enhances doxorubicin-induced apoptosis through BAD-mediated mitochondrial apoptotic pathway. Molecular Cancer Therapeutics, 7(10), 3160-8.
  32. Tsang, W.P., Wong, T.W., Cheung, H.H., Co, C.N., & Kwok, T.T. (2007). Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR. RNA, 13(6), 890-8.

* Corresponding / Co-corresponding author

  1. RGC - General Research Fund [PI; 01-Jan-23 to 31-Dec-25]: "A zebrafish model for studying RecQ helicase disorders".
  2. RGC - General Research Fund [PI; 01-Jan-22 to 31-Dec-24]: "Elucidating the role of nucleolar RNA helicase DDX21 in neurodegeneration".
  3. RGC - General Research Fund [PI; 01-Jan-21 to 31-Dec-23]: "Studying the mechanism of WRN for causing short stature in Werner syndrome".
  4. Health@InnoHK Fund [Co-PI; 01-May-20 to 30-April-25]: “Generation of Epithelial Stem Cell for Skin Regeneration".
  5. RGC - General Research Fund [PI; 01-Jan-19 to 31-Dec-21]: "Impaired pro-angiogenesis in mesenchymal stem cells of Werner syndrome: Implication in premature vascular aging".
  6. RGC - General Research Fund [PI; 01-Jan-18 to 31-Dec-20]: "The function of a primate-specific microRNA-1202 in dopaminergic neurons".
  7. National Natural Science Foundation of China (NSFC) – Young Scientist Fund [PI; 01-Jan-17 to 31-Dec-19]: "The Role and Mechanism of Endoplasmic Reticulum Stress in the Aging of Mesenchymal Stem Cells".