School of Biomedical Sciences
The Chinese University of Hong Kong 香港中文大學



B.Sc., M.Sc, Ph.D.

電話: 3943 1344

電郵  Email住址會使用灌水程式保護機制。你需要啟動Javascript才能觀看它

  Room 620A, 6/F., Lo Kwee Seong Integrated Biomedical Sci. Bldg, Area 39, CUHK




Prof. ZHAO Hui (趙暉) is working at the School of Biomedical Sciences, The Chinese University of Hong Kong.  He received his Bachelor Degree and Master Degree from Shandong University. He then went to Germany, and got his Ph.D. from the University of Essen, Germany.  He had his post-doctoral training at the National Institutes of Health and Child Health and Development (NICHD) before he joined The Chinese University of Hong Kong in 2008.  Professor Zhao’s research interests cover developmental biology and cancer biology.  His laboratory studies the mechanism of neural crest differentiation, germ layer formation and cell migration, and how these multiple events affect the embryonic patterning. In the past few years, he also studied the tumorigenesis of neuroblastoma.  Recently his group utilized TALEN and Cas9 nucleases to do gene targeting in Xenopus, zebrafish, and stem cells.  He has published over 70 papers in high impact journals including PNAS, Development, EMBO Journal, Nucleic Acids Research and Journal of Biological Chemistry.  He serves as reviewers for various magazines including PNAS, Development, and Plos Biology.  His research is supported by the funds from the Ministry of Science and Technology, the National Natural Science Foundation of China and Hong Kong Research Grants Council. 

  1. Genetic and epigenetic regulation in the neural crest formation.
  2. Molecular mechanisms of germ layer formation during early embryonic development.
  3. Gene regulation and functional genomics in neuroblastoma.
  4. Genome editing in Xenopus embryos and stem cells.
  5. Molecular mechanisms of tissue regeneration and repair.
  1. Teekakirikul, P., Zhu, W., Xu, X., Young, C.B., Tan, T., Smith, A.M., Wang, C.D., Peterson, K.A., Gabriel, G.C., Ho, S., Sheng, Y., de Bellaing, A.M., Sonnenberg, D.A., Lin, J.H., Fotiou, E., Tenin, G., Wang, M.X., Wu, Y.L., Feinstein, T., Devine, W., Gou, H, Bais, A.S., Glennon, B.J., Zahid, M., Wong, T.C., Ahmad, F., Rynkiewicz, M.J., Lehman, W.J., Keavney, B., Alastalo, T.P., Freckmann, M.L., Orwig, K., Murray, S., Ware, S.M., Zhao, H., Feingold, B., & Lo, C.W. (2022). Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability. Cell Rep Med, 3: 100501.
  2. Wang, H., Wang, C., Long, Q., Zhang, Y., Wang, M., Liu, J., Qi, X., Cai, D.Q., Lu, G., Sun, J., Yao, Y.G., Chan, W.Y., Chan, W.Y., Deng, Y., & Zhao, H. (2021). Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. Development, 148: dev199441.
  3. Long, Q., Zhou, Y., Wu, H., Du, S., Hu, M., Qi, J., Li, W., Guo, J., Wu, Y., Yang, L., Xiang, G., Wang, L., Ye, S., Wen, J., Mao, H., Wang, J., Zhao, H., Chan, W.Y., Liu, J., Chen, Y., Li, P., & Liu, X. (2021) Phase separation drives the self-assembly of mitochondrial nucleoids for transcriptional modulation. Nat Struct Mol Biol., 28: 900-908.
  4. Wang, C., Qi, C., Zhou, X., Sun, J., Cai, D., Lu, G., Chen, X., Jiang, Z., Deng, Y., Yao, Y.G., Chan, W.Y., & Zhao, H. (2020). RNA-Seq analysis on ets1 mutant embryos of Xenopus tropicalis identifies microseminoprotein beta gene 3 as an essential regulator of neural crest migration. FASEB J., 34:12726-12738.
  5. Shu, Y., Wang, Y., Lv, W.Q., Peng, D.Y., Li, J., Zhang, H., Jiang, G.J., Yang, B.J., Liu, S., Zhang, J., Chen, Y.H., Tang, S., Wan, K.X., Yuan, J.T., Guo, W., Fu, G., Qi, X.K., Liu, Z.D., Liu, H.Y., Yang, C., Zhang, L.H., Liu, F.J., Yu, J., Zhang, P.H., Qu, B., Zhao, H., He, T.C., & Zou, L. (2020). ARRB1-promoted NOTCH1 degradation is suppressed by oncomiR miR-223 in T cell acute lymphoblastic leukemia. Cancer Res., 80, 988-998.
  6. Xie, Y., Lv, X., Ni, D., Liu, J., Hu, Y., Liu, Y., Liu, Y., Liu, R., Zhao, H., Lu, Z., & Zhou, Q. (2019). HPD degradation regulated by the TTC36-STK33-PELI1 signaling axis induces tyrosinemia and neurological damage. Nat Commun., 10: 4266.
  7. Li, T.F., Deng, Y., Shi, Y., Tian, R.J., Chen, Y.L., Zou, L., Kazi, J.U., Rönnstrand, L., Feng, B., Chan, S.O., Chan, W.Y., Sun, J., & Zhao, H. (2018). Bruton’s tyrosine kinase potentiates ALK signaling and serves as a potential therapeutic target of neuroblastoma. Oncogene, 37, 6180-6194.
  8. He, X.Y., Tan, Z.L., Mou, Q., Liu, F.J., Liu, S., Yu, C.W., Zhu, J., Lv, L.Y., Zhang, J., Wang, S., Bao, L., Peng, B., Zhao, H., & Zou, L. (2017). microRNA-221 enhances MYCN via targeting nemo-like kinase, and functions as an oncogene related to poor prognosis in neuroblastoma. Clin. Cancer Res., 23, 2905-2918.
  9. He, X., Tan, C., Wang, F., Wang, Y., Zhou, R., Cui, D., You, W., Zhao, H., Ren, J., & Feng, B. (2016). Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res., 44(9), e85.
  10. Wang, C.D., Kam, R.T.K., Shi, W.L., Xia, Y., Chen, X.F., Cao, Y., Sun, J., Du, Y., Lu, G., Chen, Z.J., Chan, W.Y., Chan, S.O., Deng, Y., & Zhao, H. (2015). The proto-oncogene transcription factor Ets1 regulates neural crest development through Histone Deacetylase 1 to mediate output of bone morphogenetic protein signaling. J. Biol. Chem., 290(36), 21925-21938.
  11. Shi, Z., Wang, F., Cui, Y., Liu, Z., Guo, X., Zhang, Y., Deng, Y., Zhao, H., & Chen, Y. (2015). Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis. FASEB J., 29(12), 4914-4923.
  12. Shi, W. L., Xu, G., Wang, C.D., Sperber, S.M., Chen, Y.L., Zhou, Q., Deng, Y., & Zhao, H. (2015). Heat shock 70kDa protein 5 (Hspa5) is essential for pronephros formation by mediating retinoic acid signaling. J. Biol. Chem., 290(1), 577-589.
  13. Hu, J., Lei, Y., Wong, W.K., Liu, S., Lee, K.C., He, X., You, W., Zhou, R., Guo, J.T., Chen, X., Peng, X., Sun, H., Huang, H., Zhao, H., & Feng, B. (2014). Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res., 42(7), 4375-4390.
  14. Guo, X. G., Zhang, T.J., Hu, Z., Zhang, Y. Q., Shi, Z. Y., Wang, Q. H., Cui, Y., Wang, F.Q., Zhao, H., & Chen, Y.L. (2014). Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development, 141, 1-8.
  15. Kam, R.K.T., Shi, W., Chan, S.O., Chen, Y., Xu, G., Lau, C.B.S., Fung, K.P., Chan, W.Y., & Zhao, H. (2013). dhrs3 attenuates the retinoic acid signaling and is required for early embryonic patterning. J. Biol. Chem., 288(44), 31477-31487.
  16. Lei, Y., Guo, X.G., Liu, Y., Cao, Y., Deng, Y., Chen, X.F., Cheng, H.K.C., Dawid, I.B., Chen, Y.L., & Zhao, H. (2012). Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc. Natl. Acad. Sci. USA, 109(43), 17484-17489.
  17. Zhao, H., Han, D., Pieler, T., & Chen, Y. (2012). Hhex induced conversion of intestinal to ventral pancreatic precursor cells results in the formation of giant pancreata in Xenopus embryos. Proc. Natl. Acad. Sci. USA, 109, 8594-8599.
  18. Tanegashima, K., Zhao, H., Rebbert, M., & Dawid, I.B. (2009). Notochord differentiation requires activation of the unfolded protein response. Development, 136, 3543-3548.
  19. Zhao, H., Tanegashima, K., Ro, H., & Dawid, I. (2008). Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways. Development, 135(7), 1283-1293.
  20. Tanegashima, K., Zhao, H., & Dawid, I. (2008). WGEF activates Rho in the Wnt-PCP pathway and controls convergent extension in Xenopus gastrulation. EMBO. J., 27(4), 606-617.
  1. RGC - General Research Fund [PI; 01-Jan-21 to 31-Dec-23]: "Mechanistic study of the role of Ras suppressor 1 (RSU1) in angiogenesis during embryonic development" (HK$1,195,542).
  2. RGC - General Research Fund [PI; 01-Jan-19 to 31-Dec-21]: "A mechanistic study on embryonic patterning mediated by Zinc finger SWIM-type containing 4 (Zswim4)-a novel mediator of BMP-Smad1/5/8 signalling axis " (HK$972,000).
  3. RGC - General Research Fund [PI; 01-Jan-18 to 31-Dec-20]: "Mechanistic studies of Kindlin-2 in mesoderm formation: Explore the mechanism of integration of mechanotransduction and chemical signal transduction in embryos" (HK$894,340).
  4. International Partnership Program of Chinese Academy of Sciences (中國科學院國際合作局對外合作重點項目) [PI; 01-Jan-18 to 31-Dec-19]: "Molecular Mechanism of Autophagy in Alzheimer's Disease (Total project amount awarded: RMB1,000,000/HKD1,200,740).
  5. RGC - General Research Fund-ECS [PI; 01-Jan-15 to 30-Jun-18]: "Xbp1-Bip pathway of the physiological endoplasmic reticulum stress in pronephric kidney (pronephros) development" (HK$914,900 + HK$50,000).