School of Biomedical Sciences
生物醫學學院
The Chinese University of Hong Kong 香港中文大學


Feng Bo 2 Associate Professor

Ph.D.

Telephone:  3943 1455

Email:  This email address is being protected from spambots. You need JavaScript enabled to view it.

Address:  Rm 105A, Lo Kwee Seong Integrated Biomedical Sci. Bldg, CUHK

Website:  http://ihome.sbs.cuhk.edu.hk/FengBo/

ORCID: https://orcid.org/0000-0002-4018-3257

 

 

 

Biography

Prof. FENG Bo (馮波) is an Associate Professor in the School Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong (CUHK).  She is an active staff member in the Developmental and Regenerative Biology Thematic Research Program, Institute for Tissue Engineering and Regenerative Medicine, MOE Key Laboratory for Regenerative Medicine and CUHK-GIBH Joint Laboratory on Stem Cell and Regenerative Medicine.  Prof. Feng graduated from Nankai University with B.Sc. (1993) and M.Sc (1996), and received her Ph.D. (2006) from National University of Singapore.  After graduation, Prof. Feng joined Prof. Ng Huck Hui’s lab in Genome Institute of Singapore as a postdoc.  She worked on stem cells and reprogramming and published her works in Nature Cell Biology, Cell Stem Cell and Nature.  In Nov 2010, Prof. Feng joined CUHK and her current research interest lies within the molecular mechanism that controls pluripotency and differentiation of ESCs/iPSCs, as well as development of new tools for gene and cell-based therapy. 

  1. AAV and CRISPR technology. 
  2. T cells engineering for cancer treatment.
  3. Gene and Cell Therapy for inherited disorders and infectious diseases.
  4. Molecular mechanisms that control stem cell self-renewal and differentiation.
  5. Generation of iPS cells and study of reprogramming process.
  1. Ma, X., Dai, L., Tan, C., Li, J., He, X., Wang, Y., Xue, J., Huang, M., Ren, J., Xia, Y., Wu, Q., Zhao, H., Chan, W.Y., Feng, B. (2024). Beta-catenin mediates endodermal commitment of human ES cells via distinct transactivation functions. Cell Biosci., 14(1):96. doi: 10.1186/s13578-024-01279-5.
  2. Zhang, Z., Zhang, S., Wong, H.T., Li, D, Feng, B. (2024). Targeted Gene Insertion: The Cutting Edge of CRISPR Drug Development with Hemophilia as a Highlight. BioDrugs, 38(3):369-385. doi: 10.1007/s40259-024-00654-5.
  3. Chen, L., Hong, M., Luan, C., Gao, H., Ru, G., Guo, X., Zhang, D., Zhang, S., Li, C., Wu, J., Randolph, P.B., Sousa, A.A., Qu, C., Zhu, Y., Guan, Y., Wang, L., Liu, M., Feng, B., Song, G., Liu, D.R., Li, D. (2024). Adenine transversion editors enable precise, efficient A*T-to-C*G base editing in mammalian cells and embryos. Nat Biotechnol., 42(4):638-650. doi: 10.1038/s41587-023-01821-9.
  4. He, X.*, Zhang, Z.*, Xue, J., Wang, Y., Zhang, S., Wei, J., Zhang, C., Wang, J., Urip, B.A., Ngan, C.C., Sun, J., Li, Y., Lu, Z., Zhao, H., Pei, D., Li, C.K., Feng, B. (2022). Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response. Nat Commun, 13(1): 7275. doi: 10.1038/s41467-022-34898-y.
  5. He, X., Urip, B.A., Zhang, Z., Ngan, C.C., Feng, B. (2021). Evolving AAV-delivered therapeutics towards ultimate cures. J Mol Med (Berl), 99(5): 593-617. doi: 10.1007/s00109-020-02034-2.
  6. Lu, Y., Wong, K.Y., Tan, C., Ma, J.#, Feng, B.#, Lin, G.# (2020). Establishment of a novel CYP3A4-transduced human hepatic sinusoidal endothelial cell model and its application in screening hepatotoxicity of pyrrolizidine alkaloids. J Environ Sci Health C Toxicol Carcinog, 38(2): 169-185. doi: 10.1080/26896583.2020.1769409.
  7. Wang, J., Zhang, C., Feng, B. (2020). The rapidly advancing Class 2 CRISPR-Cas technologies: a customizable toolbox for molecular manipulations. J Cell Mol Med, 24(6): 3256–3270. doi: 10.1111/jcmm.15039.
  8. Zhang, C.*, He. X.*, Kwok, Y.K., Wang, F., Xue, Y., Zhao, H., Suen, K.W., Wang, C.C., Ren, J., Chen, G.G., Lai, B.S., Li, J., Xia, Y., Chan, A.M., Chan, W.Y., Feng, B. (2018). Homology-independent multiallelic disruption via CRISPR/Cas9-based knock-in yields distinct functional outcomes in human cells. BMC Biol, 16(1): 151. doi: 10.1186/s12915-018-0616-2.
  9. He, X., Li, Y.X., Feng, B. (2018). New turns for high efficiency knock-in of large DNA in human pluripotent stem cells. Stem Cells Int, 2018: 9465028. doi: 10.1155/2018/9465028.
  10. Ma, X., Wong, A.S.Y., Tam, H.Y., Tsui, S.Y.K., Chung, D.L.S., Feng, B. (2018). In vivo genome editing thrives with diversified CRISPR technologies. Zool Res, 39(2): 58-71. doi: 10.24272/j.issn.2095-8137.2017.012.
  11. Wang, Y., Qin, J., Wang, S., Zhang, W., Duan, J., Zhang, J., Wang, X., Yan, F., Chang, M., Liu, X., Feng, B., Liu, J., Pei, X. (2016). Conversion of human gastric epithelial cells to multipotent endodermal progenitors using defined small molecules. Cell Stem Cell, 19(4): 449-461. doi: 10.1016/j.stem.2016.06.006.
  12. He, X., Tan, C., Wang, F., Wang, Y., Zhou, R., Cui, D., You, W., Zhao, H., Ren, J., Feng, B. (2016). Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res, 44(9): e85. doi: 10.1093/nar/gkw064.
  13. Wang, X.W., He, X.J., Lee, K.C., Huang, C., Hu, J.B., Zhou, R., Xiang, X.Y., Feng, B.#, Lu, Z.Q.# (2016). MicroRNA-221 sponge therapy attenuates neointimal hyperplasia and improves blood flows in vein grafts. Int J Cardiol, 208: 79-86. doi: 10.1016/j.ijcard.2016.01.006.
  14. Wang, Y., Cheung, A.C., Guo, J.T., Feng B. (2015). Genome-wide Massive Sequencing in Embryonic Stem Cell Biology: Recent Insights and Challenges. J Stem Cell Res Ther, 5: 8. doi: 10.4172/2157-7633.1000296.
  15. Liu, S., Xu, Y., Zhou, Z., Feng, B.#, Huang, H.# (2015). Progress and challenges in generating functional hematopoietic stem/progenitor cells from human pluripotent stem cells. Cytotherapy, 17(4): 344-358. doi: 10.1016/j.jcyt.2015.01.003.
  16. Tu, J., Ng, S.H., Luk, A.C., Liao, J., Jiang, X., Feng, B., Mak, K.L.K., Rennert, O.M., Chan, W.Y., & Lee, T.L. (2015). MicroRNA-29b/Tet1 regulatory axis epigenetically modulates mesendoderm differentiation in mouse embryonic stem cells. Nucleic Acids Res, 43(16): 7805-7822. doi: 10.1093/nar/gkv653.
  17. Hu, J., Lei, Y., Wong, W.K., Liu, S., Lee, K.C., He, X., You, W., Zhou, R., Guo, J.T., Chen, X., Peng, X., Sun, H., Huang, H., Zhao, H., Feng, B. (2014). Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res, 42(7): 4375-4390. doi: 10.1093/nar/gku109.
  18. Ma, H., Ng, H.M., Teh, X., Li, H., Lee, Y.H., Chong, Y.M., Loh, Y.H., Collins, J.J., Feng, B., Yang, H.#, Wu, Q.# (2014). Zfp322a regulates mouse ES cell pluripotency and enhances reprogramming efficiency. PLoS Genet, 10(2): e1004038. doi: 10.1371/journal.pgen.1004038.
  19. Tsang, W.H.*, Wang, B.*, Wong, W.K.*, Shi, S.*, Chen, X., He, X, Gu, S., Hu, J., Wang, C., Liu, P.C., Lu, G., Chen, X., Zhao, H., Poon, W.S., Chan, W.Y.#, Feng, B.#. (2013). LIF-dependent primitive neural stem cells derived from mouse ES cells represent a reversible stage of neural commitment. Stem Cell Res, 11(3): 1091-102. doi: 10.1016/j.scr.2013.07.007.
  20. Lu, X.*, Goke, J.*, Sachs, F., Jacques, P.E., Liang, H., Feng, B., Bourque, G., Bubulya, P.A., Ng, H.H. (2013). SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells. Nat Cell Biol, 15(10): 1141-1152. doi: 10.1038/ncb2839.
  21. Do, D.V., Ueda, J., Messerschmidt, D.M., Lorthongpanich, C., Zhou, Y., Feng, B., Guo, G., Lin, P.J., Hossain, M.Z., Zhang, W., Moh, A., Wu, Q., Robson, P., Ng, H.H., Poellinger, L., Knowles, B.B., Solter, D., Fu, X.Y. (2013). A genetic and developmental pathway from STAT3 to the OCT4-NANOG circuit is essential for maintenance of ICM lineages in vivo. Genes Dev, 27(12): 1378-1390. doi: 10.1101/gad.221176.113.
  22. Tsang, W.H., Wang, B., Wong, W.K., Shi, S., Chen, X., He, X., Gu, S., Hu, J., Wang, C., Liu, P.C., Lu, G., Zhao, H., Poon, W.S., Chan, W.Y.#, Feng, B.# (2013). LIF-dependent primitive neural stem cells derived from mouse ES cells represent a reversible stage of neural commitment. Stem Cell Res, 11(3): 1091-1102. doi: 10.1016/j.scr.2013.07.007.
  23. Chan, Y.S., Goke, J., Lu, X., Venkatesan, N., Feng, B., Su, I.H., & Ng, H.H. (2012). A PRC2-dependent repressive role of PRDM14 in human embryonic stem cells and induced pluripotent stem cell reprogramming. Stem Cells, 31(4): 682-692. doi: 10.1002/stem.1307.
  24. Chia, N.Y.*, Chan, Y.S.*, Feng, B.*, Lu, X., Orlov, Y.L., Moreau, D., Kumar, P., Yang, L., Jiang, J., Lau, M.S., Huss, M., Soh, B.S., Kraus, P., Li, P., Lufkin, T., Lim, B., Clarke, N.D., Bard, F.#, Ng, H.H#. (2010). A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature, 468(7321): 316-320. doi: 10.1038/nature09531.
  25. Heng, J.C., Feng, B., Han, J., Jiang, J., Kraus, P., Ng, J.H., Orlov, Y.L., Huss, M., Yang, L., Lufkin, T., Lim, B., Ng, H.H. (2010). The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell, 6(2): 167-174. doi: 10.1016/j.stem.2009.12.009.
  26. Im, C.N., Kang, N.Y., Ha., H.H., Bi, X., Lee, J.J., Park, S.J., Lee, S.Y., Vendrell, M., Kim, Y.K., Lee, J.S., Li, J., Ahn, Y.H., Feng, B., Ng, H.H., Yun, S.W., & Chang, Y.T. (2010). A fluorescent rosamine compound selectively stains pluripotent stem cells. Angew Chem Int Ed Engl, 49(41): 7497-7500. doi: 10.1002/anie.201002463.
  27. Feng, B., Jiang, J., Kraus, P., Ng, J.H., Heng, J.C., Chan, Y.S., Yaw, L.P., Zhang, W., Loh, Y.H., Han, J., Vega, V.B., Cacheux-Rataboul, V., Lim, B., Lufkin, T., Ng, H.H. (2009). Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Cell Biol,11(2): 197-203. doi: 10.1038/ncb1827.
  28. Feng, B., Ng, J.H., Heng, J.C., & Ng, H.H. (2009). Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell, 4(4), 301-312. doi: 10.1016/j.stem.2009.03.005.
  1. RGC - General Research Fund [PI; Jan-2025 to Dec–2027]: "In-depth analysis of CRIPSR-based in vivo gene insertion strategies in neonatal hemophilia B mice for early gene therapy" (HK$1,552,270).
  2. RGC - Collaborative Research Fund [Co-PI; Jul-2021 to Jun-2024]: “Replication-defective SARS-CoV-2 mutant vaccines with abnormal codon usages” (HK$6,983,473).
  3. ITC – Innovation and Technology Fund [Co-PI; Jul-2021 to Dec-2024]: “Local manufacturing and development of clinical scale chimeric antigen receptor modified T-cell (CAR-T) for treatment of haematological malignancies” (HK$19,999,190).
  4. RGC - General Research Fund [PI; Jan-2021 to Dec–2023]: " A study on homology-independent somatic knock-in via AAV-CRISPR system for hemophilia B gene therapy in neonates " (HK$1,193,569).
  5. RGC - General Research Fund [PI; 2020]: "Study on the functions of Wnt signaling pathways in endodermal differentiation of human embryonic stem cells" (HK$1,114,178).
  6. RGC - General Research Fund [PI; 2019]: "Investigating the Roles of LincRNAs in Totipotency Control" (HK$1,142,956).
  7. RGC - General Research Fund [PI; 2015]: "Studying functions of Ccdc141 in neural induction using mouse embryonic stem cells and Xenopus as model systems" (HK$860,868).
  8. RGC - General Research Fund [PI; 2014]: "Study on the early neural commitment of embryonic stem cells induced by BMP and TGFβ inhibition" (HK$744,788).
  9. RGC - Early Career Scheme [PI; Jan-2013 to Jun-2017]: " A study on the naïve pluripotency in human induced pluripotent stem cells (iPSC)" (HK$2,850,000).
  10. RGC - General Research Fund [PI; Jan-2012 to Dec-2013]: "Systematic screening for new factors that can promote rapid generation of human induced pluripotent stem cells (iPSCs)" (HK$627,000).