School of Biomedical Sciences
生物醫學學院
The Chinese University of Hong Kong 香港中文大學

WAN Chao

Associate Professor

MBBS, MS, Ph.D.

Telephone:   3943 4494

Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Address:

Rm 128A, Lo Kwee-Seong Integrated Biomedical Sci. Bldg, CUHK

Publons: https://publons.com/researcher/2608661/chao-wan/

ORCID: https://orcid.org/0000-0001-6780-2006

 

 

 

Biography

Prof. WAN Chao (萬超) is an Associate Professor in School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong (CUHK).  He is an active member of Institute for Tissue Engineering and Regenerative Medicine, MOE Key Laboratory for Regenerative Medicine, and CUHK-GIBH Joint Laboratory on Stem Cell and Regenerative Medicine, CUHK.  Prof. Wan obtained his Ph.D. in Shanghai Jiaotong University School of Medicine in 2002, then worked as a resident Orthopaedic Surgeon in Longhua Hospital, Shanghai University of Traditional Chinese Medicine.  He pursued postdoctoral training in School of Medicine, The Queen’s University of Belfast, UK (2003-2005), and in School of Medicine, University of Alabama at Birmingham (UAB), USA (2005-2007). He was then appointed as an Instructor in Department of Pathology, UAB, and an Instructor in Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine.  Prof. Wan joined CUHK as an Assistant Professor in 2009.  Prof. Wan’s research interests include the molecular and cellular mechanisms of the oxygen sensing and growth factor pathways in skeletal development, degeneration and regeneration, and discovery of novel therapies for skeletal tissue repair or regeneration. His research work has been published in international journals including Proc Natl Acad Sci USA, J Clin Invest, Nat Med, Cell, Bone Res, and Biomaterials.  He was a recipient of British Orthopaedic Research Society Travelling Award, ICMRS Webster Jee Young Investigator Award, and ASBMR Harold Frost Young Investigator Award.  He serves as an editorial board member of J Orthop Translat and Medical Reference Newspaper, Osteoporosis Channel, National Health and Family Planning Commission, P.R. China, and as a reviewer of more than 20 international journals in the field.  His research work was supported by Hong Kong Research Grants Council, Health and Medical Research Fund, NSFC and MOST.

  1. Molecular and cellular mechanisms of skeletal development, metabolism and regeneration.
  2. Molecular control of stem cell self-renewal and mesenchymal lineage differentiation.
  3. Tissue engineering for skeletal tissue repair.
  4. Efficacy and novel therapeutics of Chinese medicines for skeletal tissue repair.
  1. Zhang, H., Zhou, Z., Zhang, F., & Wan, C. (2024). Hydrogel-based 3D bioprinting technology for articular cartilage regenerative engineering. Gels, 10(7), 430.
  2. Li, Z., Chen, Z., Wang, X., Li, Z., Sun, H., Wei, J., Zeng, X., Cao, X., & Wan, C. (2022). Integrated analysis of miRNAs and gene expression profiles reveals potential biomarkers for osteoarthritis. Front Genet, 13: 814645.
  3. Wan, C., Zhang, F., Yao, H., Li, H., Tuan, R.S. (2021). Histone Modifications and Chondrocyte Fate: Regulation and Therapeutic Implications. Front Cell Dev Biol, 9:626708.
  4. Yu, L., Xie, M., Zhang, F., Wan, C., Yao, X. (2021). TM9SF4 is a novel regulator in lineage commitment of bone marrow mesenchymal stem cells to either osteoblasts or adipocytes. Stem Cell Res Ther, 12(1):573.
  5. Tu, J., Wan, C., Zhang F., Cao, L., Law, W.L.P., Tian, Y., Lu, G., Rennert, M.O., Chan, W.Y., Cheung, H.H. (2020). Genetic correction of Werner syndrome gene reveals impaired pro-angiogenic function and HGF insufficiency in mesenchymal stem cells. Aging cell, 19(5), e13116 pgs.
  6. Yang, Z., Kou, S., Wei, X., Zhang, F., Li, F., Wang, X., Lin, Y., Wan, C., Zhang, W., & Sun, F. (2018). Genetically Programming Stress-Relaxation Behavior in Entirely Protein-Based Molecular Networks. ACS Macro Letters, 7(12), 1468-1474. doi: 10.1021/acsmacrolett.8b00845
  7. Wang, J., Zhang, F., Tsang, W.P., Wan, C., & Wu, C. (2017). Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering. Biomaterials, 120, 11-21.
  8. Tsang, W. P., Zhang, F., He, Q., Cai, W., Huang, J., Chan, W.Y., Shen, Z., & Wan, C. (2017). Icaritin enhances mESC self-renewal through upregulating core pluripotency transcription factors mediated by ERα. Sci Rep, 7, 40894.
  9. He, Q., Swindle, C.S., Wan, C., Flynn, R.J., Oster, R.A., Chen, D., Zhang, F., Shu, Y., & Klug, C.A. (2017). Enhanced hematopoietic stem cell self-renewal-promoting ability of clonal primary MSC versus their osteogenic progeny. Stem Cells, 35(2), 473-484.
  10. Wang, P.Z., Zhang, F., Shu, Y., Shiu, H.T., He, Q., Tsang, W. P., & Wan, C. (2016). Flavonoid compound Icariin activates hypoxia inducible factor-1α in chondrocytes and promotes articular cartilage repair. PLoS One, 11(2), e0148372.
  11. Chen, X., Gu, S., Chen, B.F., Shen, W.L., Yin, Z., Xu, G. W., Hu, J.J., Zhu, T., Li, G., Ouyang, H.W., Wan, C., Lee, T.L., & Chan, W.Y. (2015). Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials, 53, 239-250.
  12. Tian, Y., Xu, Y., Fu, Q., Chang, M., Wang, Y., Shang, X., Wan, C., Marymont, J.V., & Dong, Y. (2015). Notch inhibits chondrogenic differentiation of mesenchymal progenitor cells by targeting Twist1. Mol Cell Endocrinol, 403C, 30-38.
  13. Su, X., Zuo, W., Wu, Z., Chen, J., Wu, N., Ma, P., Xia, Z., Jiang, C., Ye, Z., Liu, S., Liu, J., Zhou, G., Wan, C., & Qiu, G. (2015). CD146 as a new marker for an increased chondroprogenitor cell sub-population in the later stages of osteoarthritis. J Orthop Res, 33(1), 84-91.
  14. Cheng, X., Chen, J. L., Ma, Z.L., Zhang, Z.L., Lv, S., Mai, D.M., Liu, J.J., Chuai, M., Lee, K.K., Wan, C., & Yang, X. (2014). Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development. Toxicol Appl Pharmacol, 2014, 281(1), 19-29.
  15. Zhang, F., He, Q., Tsang, W.P., Garvey, W.T., Chan, W.Y., & Wan, C. (2014). Insulin exerts direct, IGF-1 independent actions in growth plate chondrocytes. Bone Research, 2(2), 14012.
  16. Wan, L., Zhang, F., He, Q., Tsang, W. P., Lu, L., Li, Q., Liu, Z., Qiu, G., Zhou, G., & Wan, C. (2014). EPO promotes bone repair through enhanced cartilaginous callus formation and angiogenesis. PLoS One, 9(7), e102010.
  17. Meng, F., Rui, Y., Xu, L., Wan, C., Jiang, X., & Li, G. (2014). Aqp1 enhances migration of bone marrow mesenchymal stem cells through regulation of FAK and β-catenin. Stem Cells Dev, 2014, 23(1), 66-75.
  18. Tsang, W. P., Shu, Y., Kwok, P.L., Zhang, F., Lee, K.K.H., Tang, M.K., Li, G., Chan, K.M., Chan, W.Y., & Wan, C. (2013). CD146 human umbilical cord perivascular cells maintain stemness under hypoxia and as a cell source for skeletal regeneration. PLoS One, 8(10), e76153.
  19. Yao, D., Xie, X.H., Wang, X.L., Wan, C., Lee, Y.W., Chen, S.H., Pei, D.Q., Wang, Y.X., Li, G., & Qin, L. (2012). Icaritin, an exogenous phytomolecule, enhances osteogenesis but not angiogenesis - an in vitro efficacy study. PLoS One, 7(8), e41264.
  20. Zhang, W., Shen, X., Wan, C., Zhao, Q., Zhang, L., Zhou, Q., & Deng, L. (2012). Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochem Funct, 30(4), 297-302.
  21. Wan, C., Shao, J., Gilbert, S.R., Riddle, R.C., Long, F., Johnson, R.S., Schipani, E., & Clemens, T.L. (2010). Role of HIF-1a in skeletal development. Ann N Y Acad Sci, 1192(1), 322-326.
  22. Fulzele, K., Riddle, R.C., Digirolamo, D.J., Cao, X., Wan, C., Chen, D., Faugere, M.C., Aja, S., Hussain, M.A., Brüning, J.C., & Clemens, T.L. (2010). Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell, 142(2), 309-319.
  23. Kumar, S., Wan, C., Ramaswamy, G., Clemens, T.L., & Ponnazhagan, S. (2010). Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther, 18(5), 1026-1034.
  24. Tang, Y., Wu, X., Lei, W., Pang, L., Wan, C., Shi, Z., Zhao, L., Nagy, T.R., Peng, X., Hu, J., Feng, X., Van Hul W., Wan, M., & Cao, X. (2009). TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med, 15(7), 757-765.
  25. Zhang, F., Shi, W., Qiu, T., Wu, X., Wan, C., Wang, Y., Wan, M., Clemens, T.L., & Cao, X. (2009). Sustained BMP signaling in osteoblasts stimulates bone formation by promoting angiogenesis and osteoblast differentiation. J Bone Miner Res, 2009, 24(7), 1224-1233.
  26. Shen, X., Wan, C., Ramaswamy, G., Mavalli, M., Wang, Y., Duvall, C.L., Deng, L.F., Guldberg, R.E., Eberhart, A., Clemens, T.L., & Gilbert, S.R. (2009). Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice. J Orthop Res, 2009, 27(10), 1298-1305.
  27. Jacobsen, K.A., Alaql, Z. S., Wan, C., Jennifer, L., Fitch, B.S., Mason, Z.D., Cole, R.M., Gilbert, S.R., Clemens, T.L., Morgan, E.F., Einhorn, T.A., & Gerstenfeld, L.C. (2008). Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res, 23(5), 596-609.
  28. Wan, C., Gilbert, S.R., Wang, Y., Cao, X.M., Shen, X., Ramaswamy, G., Jacobsen, K.A., Alaql, Z.S., Gerstenfeld, L.C., Einhorn, T.A., Guldberg, R.E., Deng, L., & Clemens, T.L. (2008). Activation of the hypoxia inducible factor pathway accelerates bone regeneration. Proc Natl Acad Sci USA, 105(2), 686-691.
  29. Wang, Y., Wan, C., Deng, L., Liu, X., Cao, X., Gilbert, S.R., Bouxsein, M.L., Faugere, M.C., Guldberg, R.E., Gerstenfeld, L.C., Haase, V.H., Johnson, R.S., Schipani, E., & Clemens, T.L. (2007). The hypoxia inducible factor pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest, 117(6), 1616-1626.
  30. Liu, X., Bruxvoort, K., Zylstra, C.R., Liu, J., Cichowski, R., Faugere, M.C., Bouxsein, M.L., Wan, C., Williams, B.O., & Clemens, T.L. (2007). Lifelong accumulation of bone in mice lacking PTEN in osteoblasts. Proc Natl Acad Sci USA, 104(7), 2259-2264.