Anna Maria BlockiAssistant Professor of the Institute for Tissue Engineering and Regenerative Medicine

 

Telephone:   3943 9797

Email:   This email address is being protected from spambots. You need JavaScript enabled to view it.

Address:

  Room 425C, Lo Kwee-Seong Integrated Biomedical Sci. Bldg, Area 39, CUHK

 

 

  

Biography

Prof. BLOCKI Anna joined the group of Prof. Michael Raghunath within the Department of Bioengineering (now Department of Biomedical Engineering) to pursue her PhD studies on “Peripheral blood: a simple cell source for the generation of angiogenic progenitors from monocytes”. Prof. Blocki was able to secure a PhD scholarship from the Graduate Program in Bioengineering (GPBE) and was later admitted to the top-tier PhD programme, the NUS Graduate School for Integrative Sciences and Engineering (NGS). Her work on Blood Derived Angiogenic Cells (BDACs) allowed her to formulate the hypothesis of more than one origin of pericytes, which she followed up during her later research. Her focus on regenerative cell types and extracellular matrix (ECM) engineering inspired her also to investigate the therapeutic potential of the developed technologies in preclinical studies. This was realized during her first postdoctoral appointment at the Singapore Bioimaging Consortium (SBIC) at the Agency for Science Technology and Research (A*STAR) from December 2012 to April 2015. Following that, Prof. Blocki was able to secure a competitive postdoctoral fellowship from the Charité Universitätsklinikum Berlin that allowed her to work towards ECM-mimicking biomaterials and their potential clinical application. Since February 2018 she has joined the Institute for Tissue Engineering and Regenerative Medicine and the School of Biomedical Sciences as an Assistant Professor.

  1. Engineering of bio-instructive biomaterials to guide regeneration processes.
  2. Deciphering of the extracellular matrix.
  3. Blood-derived angiogenic cells (BDACs), their pericytic identity and their potential for clinical application.
  1. Beyer, S., Koch, M., Lee, Y.H., Jung, F. & Blocki, A. (2018). An In Vitro Model of Angiogenesis during Wound Healing Provides Insights into the Complex Role of Cells and Factors in the Inflammatory and Proliferation Phase. Int. J. Mol. Sci., 19: 2913.
  2. Blocki, A.*, Beyer. S., Jung, F. & Raghunath, M.* (2018). The controversial origin of pericytes during angiogenesis – Implications for cell-based therapeutic angiogenesis and cell-based therapies. Clin. Hemorheol. Microcirc., 69(1-2): 215-232.
  3. Blocki, A., Löwenberg, C., Jiang, Y., Kratz, K., Neffe, A.T., Jung, F. & Lendlein, A. (2016). Response of encapsulated cells to a gelatin matrix with varied bulk and microenvironmental elastic properties. Polymers for Advanced Technologies, 28(10): 1245-1251.
  4. Peh, P., Lim, N.S.J., Blocki, A., Chee, S.M.L., Park, H.C., Liao, S., Chan, C. et al. (2015). Simultaneous delivery of highly diverse bioactive compounds from blend electrospun fibers for skin wound healing. Bioconjugate Chemistry, 26(7): 1348-1358.
  5. Blocki, A., Beyer, S., Dewavrin, J.Y., Goralczyk, A., Wang, A., Peh, P., Ng, M. et al. (2015). Microcapsules engineered to support mesenchymal stem cell (MSC) survival and proliferation enable long-term retention of MSCs in infarcted myocardium. Biomaterials, 53: 12-24
  6. Dewavrin, J.Y., Abdurrahiem, M., Blocki, A., Musib, M., Piazza, F. & Raghunath, M. (2015). Synergistic Rate Boosting of Collagen Fibrillogenesis in Heterogeneous Mixtures of Crowding Agents. The Journal of Physical Chemistry B, 119(12): 4350-4358.
  7. Blocki, A., Wang, Y., Koch, M., Goralczyk, A., Beyer, S., Agarwal, N., Lee, M. et al. (2015). Sourcing of an Alternative Pericyte-Like Cell Type from Peripheral Blood in Clinically Relevant Numbers for Therapeutic Angiogenic Applications. Molecular Therapy, 23(3): 510-522.
  8. Rashid, R., Beyer, S., Blocki, A., Le Visage, C., Trau, D., Wohland, T. et al. (2014). Mitochondrial Routing of Glucose and Sucrose Polymers after Pinocytotic Uptake: Avenues for Drug Delivery. Biomacromolecules, 15(6): 2119-2127.
  9. Ang, X.M., Lee, M.H.C., Blocki, A., Chen, C., Ong. L.L.S., Asada, H.H., Sheppard, A. et al. (2013). Macromolecular crowding amplifies adipogenesis of human bone marrow-derived mesenchymal stem cells by enhancing the pro-adipogenic microenvironment. Tissue Engineering Part A, 20(5-6): 966-981.
  10. Blocki, A., Wang, Y., Koch, M., Peh, P., Beyer, S., Law, P., Hui, J. & Raghunath, M. (2013). Not all MSCs can act as pericytes: functional in vitro assays to distinguish pericytes from other mesenchymal stem cells in angiogenesis. Stem Cells and Development, 22(17): 2347-2355.
  11. Chen, C., Loe, F., Blocki, A., Peng, Y. & Raghunath, M. (2011). Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Advanced drug delivery reviews, 63(4): 277-290.

    * Co-corresponding Author
  1. Postdoctoral fellowship, Charité - Universitätsmedizin zu Berlin, Berlin-Brandenburg School for Regenerative Therapies (BSRT) including 20,000 Euro research grant.